The Impact of Opioid Substitution Treatment on Highly Active Antiretroviral Treatment Adherence

Bohdan Nosyk^{1,2}, Jeong Eun Min¹, Guillaume Colley¹, Viviane D Lima^{1,3}, Benita Yip¹, Michael-John Milloy¹, Evan Wood^{1,3}, Julio SG Montaner^{1,3}

¹ BC Centre for Excellence in HIV/AIDS; ² Faculty of Health Sciences, Simon Fraser University; ³ Division of AIDS, Faculty of Medicine, University of British Columbia

Background

- Injection drug users account for roughly 13% of the prevalent HIV/ AIDS population outside of sub-Saharan Africa, and access to opioid substitution treatment (OST) is limited in many settings globally.
- OST likely facilitates access to highly-active antiretroviral therapy (HAART), yet sparse evidence is available to support this hypothesis.
- Our objective is to determine the causal impact of OST exposure on adherence to HAART among HIV-positive opioid dependent individuals in a Canadian setting.

Methods

- We selected all identified HAART-eligible HIV-positive individuals ever accessing OST, as indicated by methadone or buprenorphine dispensation records in the BC PharmaNet database, from July 1st, 1996 to March 31st, 2010.
- The dependent variable in the study was 95% HAART adherence, according to pharmacy refill compliance records, measured on a monthly basis.
- Exposure to OST, defined by ≥21 days of OST dispensed in a calendar month was the key independent variable considered.
- Past HAART adherence can be considered a time-dependent confounder for the effect of OST on future HAART adherence, since it may be hypothesized to not only predict future HAART adherence, but also subsequent initiation of OST, and past OST history is an independent predictor of subsequent HAART adherence. The hypothesized relationship is characterized in the directed acyclic graph illustrated in Figure 1.
- To control for time-varying confounding in the exposure-outcome relationship, a marginal structural model was used with monthlyupdated inverse probability of treatment weights (IPTW).
- We controlled for fixed and time-varying covariates, including age, gender, ethnicity, geographic area of residence, calendar year, OST history at HAART eligibility, AIDS status, CD4 and prior HAART exposure in estimated IPTW.

Figure 1. Directed acyclic graph illustrating the hypothesized causal relationship between time-varying OST and HAART exposure

Results

 Among 12,349 HIV-positive individuals observed in BC between 1996 and 2010, 1,811(14.7%) accessed OST, with 1,337(73.8%) eligible for our study.

• Subjects were 39% female, were of median age 35 (interquartile range:29-41) at HAART eligibility, and had a median of 6.8 years (2.9-11.1) of follow-up.

During OST, individuals spent a median 55% (20%-84%) of the time on HAART, while out of OST individuals spent only 26%(7%-56%) of the time on HAART (**Table 1**).

• The unadjusted odds of HAART adherence during OST exposure was 2.27 (95% confidence interval: 2.01-2.55), while the adjusted odds, estimated within the marginal structural model, was 1.95 (1.71-2.23) (**Table 2**).

 We considered three changes in the classification of OST exposure: (i) using a 95% adherence threshold to indicate exposure, (ii) requiring treatment at the minimum effective dose, and (iii) requiring that individuals be at a stable maintenance dose to be classified as exposed. In each case, adjusted odds ratios in the structural model decreased, but remained statistically significantly positive (Table 2).

• We also considered subgroups of individuals becoming eligible in the modern HAART era, and those with no OST experience at HAART eligibility. In each case, odds ratios were higher than in the baseline model formulation (Table 2).

Table 1. Summary statistics on exposure to OST and HAART throughout study follow-up

Variable	

- Total years of follow-up
- Total time on HAART / Total follow-up (%) Total time on OST / Total follow-up (%)
- Total time on HAART only / Total follow-up
- Total time on OST only / Total follow-up (%
- Total time on HAART and OST / Total follow
- Total time off HAART and OST / Total follow
- Total time on HAART during OST / Total tim Total time on HAART outside OST / Total ti (%)
- Time to HAART initiation following HAART Time to OST initiation following HAART el

Table 2. Sensitivity analysis on the effect of OST on HAART

Model Specification

Unweighted estimates Unadjusted, GEE **Baseline adjusted, GEE** Baseline + time-dependent adjusted, GEE eighted estimates **Baseline model specification Baseline model with truncated IPTW** Initiating treatment with modern-era HAAR No OST experience prior to HAART eligibility

- 95% OST adherence
- OST with minimum effective dose
- OST during maintenance treatment

GEE: Generalized Estimating Equations; OR (95% CI): Odds Ratio (95% Confidence interval); ITT: Intent-totreat; SE: standard error; IPTW: Inverse probability of treatment weights. *For the assumption of positivity or no misspecification to hold, the mean of IPTWs should be approximately equal to one.

Conclusions

- among opioid-dependent individuals with HIV.
- The results were robust to a number of sensitivity analyses inherent in the selected modeling approach.
- and HIV/AIDS.

BRITISH COLUMBIA **CENTRE** for **EXCELLENCE** *in* HIV/AIDS

PRESENTING AUTHOR: Bohdan Nosyk BC Centre for Excellence in HIV/AIDS 603-1081 Burrard Street Vancouver BC Canada V6Z 1Y6 email: bnosyk@cfenet.ubc.ca

	Median (IQR)	
	6.8 (2.9 – 11.1)	
	44 (20 – 68)	
	52 (14 – 87)	
(%)	7 (1 – 24)	
	14 (2 – 37)	
v-up (%)	18 (0 – 50)	
v-up (%)	27 (5 - 53)	
ne on OST (%)	55 (20 - 84)	
me outside OST	26 (7 – 56)	
eligibility (years)	0.3 (0.0 – 1.3)	
gibility (years)	0.4 (0.0 – 2.3)	

	Ν	Measure of effect (OR (95% CI))	Mean (SE) of IPTWs*
	1337	2.27 (2.01,2.55)	-
	1337	2.11 (1.85,2.39)	-
	1337	2.12 (1.86,2.41)	-
	1337	1.95 (1.71,2.23)	1.01 (0.23)
	1337	1.97 (1.72,2.25)	1.01 (0.19)
Т	441	2.22 (1.74,2.83)	1.01 (0.23)
ity	649	2.21 (1.87,2.61)	1.00 (0.19)
	1337	1.66 (1.48,1.86)	1.04 (0.85)
	1337	1.41 (1.22,1.63)	1.02 (0.49)
	1337	1.37 (1.20,1.56)	1.02 (0.40)

• In a setting characterized by universal healthcare and widespread access to both office-based OST and HAART, we found that accessing OST nearly doubles the odds of HAART adherence

focusing on the assumptions of correct model specification

 These findings underline the need to address barriers to OST globally to reduce the disease burden of both opioid dependence

