HIV MONITORING QUARTERLY REPORT FOR NORTHERN HEALTH FOURTH QUARTER 2015 #### Foreword As part of the BC Centre for Excellence (BC-CFE) in HIV/AIDS's mandate to evaluate the outcomes of STOP HIV/AIDS programming in BC, we have developed quarterly HIV/AIDS monitoring reports. These reports provide up-to-date data on a variety of key HIV-related surveillance and treatment indicators. Selection of these indicators was achieved through a collaborative process with various Health Authority (HA) representatives. There are six reports in total, one for each HA and one for the province of BC as a whole. In addition, there is a technical report which explains how each HIV indicator is calculated. Data used in these reports come from the British Columbia Centre for Disease Control (BCCDC), MSP billings, hospitalization data from the Discharge Abstract Database, the Sunquest Laboratory database at the Provincial Public Health Microbiology and Reference Laboratory, Providence Health Care laboratory and the BC-CFE Drug Treatment Program (DTP) Database. The objectives of these reports are to: - 1. Provide timely HA-specific information on key HIV indicators which will guide and inform HIV leaders and innovators in the development of future HIV interventions and programs which will ultimately lead to decreasing the burden of HIV in BC. The indicators will reflect ongoing or past successful public health interventions and highlight areas in the HIV care spectrum which require further attention and support. - 2. Highlight limitations in our current data due to incomplete or time lagged data and to develop future strategies to improve complete and timely data capture. These reports are produced for the benefit of individual HA's. As such, we are enthusiastic about your involvement and cooperation regarding the development of these monitoring reports. Please forward your comments and queries to Irene Day, Director of Operations at the BC-CFE at iday@cfenet.ubc.ca. ## List of Indicators Indicator 1. HIV Testing Episodes Indicator 2. HIV Testing Rate Indicator 3. New HIV Diagnoses Indicator 4. Stage of HIV Infection at Diagnosis Indicator 5. HIV Cascade of Care Indicator 6. Programmatic Compliance Score (PCS) Indicator 7. New Antiretroviral Therapy Starts Indicator 8. CD4 Cell Count at ART Initiation Indicator 9. Active and Inactive Drug Treatment Program (DTP) Participants Indicator 10. Antiretroviral Adherence Indicator 11. Resistance Testing and Results Indicator 12. AIDS-Defining Illness Indicator 13. HIV-Related Mortality ## Table of Contents #### **Acknowledgements and Contributions** | BC Provincial STOP Program | ovincial STOP Progran | n | |-----------------------------------|-----------------------|---| |-----------------------------------|-----------------------|---| A Note on Monitoring and Interpreting HIV Indicators | Indicator 1 | HIV Testing Episodes All HIV Testing Episodes reflect non-prenatal tests. All prenatal tests have been removed | |-------------|--| | Figure 1.1 | HIV Test Episodes for Northern Health, 2011 Q1–2015 Q4 | | Figure 1.2 | HIV Test Episodes for Northern Health by Gender,
2011 Q1–2015 Q4 | | Figure 1.3 | HIV Test Episodes for Northern Health by Age Category, 2011 Q1–2015 Q4 | | Figure 1.4 | Point-of-Care HIV Tests for Northern Health, 2011 Q1–2015 Q4 | | Figure 1.5 | HIV Test Episodes by HSDA for Northern Health, 2011 Q1–2015 Q4 | | Figure 1.6 | HIV Test Episodes for Non-Prenatal Females in Northern Health by HSDA, 2011 Q1–2015 Q4 | | Figure 1.7 | HIV Test Episodes for Males in Northern Health by HSDA, 2011 Q1–2015 Q4 | | Indicator 2 | HIV Testing Rates All HIV Testing Rates reflect non-prenatal tests. All prenatal tests have been removed. | | Figure 2.1 | Rate of HIV Testing for Northern Health and HSDA's, 2009–2015 | | Figure 2.2 | Rate of HIV Testing for Northern Health by Gender, 2009–2015 | | Figure 2.3 | Rate of HIV Testing for Northern Health by Age Category, 2009–2015 | | Indicator 3 | New HIV Diagnoses | | Figure 3.1 | New HIV Diagnoses for Northern Health, 2011 Q1–2015 Q4 | | Figure 3.2 | New HIV Diagnoses for Northern Health by Gender, 2011 Q1–2015 Q4 | | Figure 3.3 | New HIV Diagnoses for Northern Health by Age Category, 2011 Q1–2015 Q4 | | Figure 3.4 | New HIV Diagnoses for Northern Health by Exposure Category, 2011 Q1–2015 Q2 | | Figure 3.5 | New HIV Diagnoses for Northern Health by HSDA, 2011 Q1-2015 Q4 | | Indicator 4 | Stage of HIV Infection at Diagnosis | | Table 1 | Staging Classifications of Infection at Time of HIV Diagnosis Based on CDC HIV Surveillance Case Definitions | | Figure 4.1 | Stage of HIV Infection at Diagnosis for Northern Health, 2010–2014 | | Figure 4.2 | Stage of HIV Infection at Diagnosis for Northern Health by Gender, 2010–2014 | | Figure 4.3 | Stage of HIV Infection at Diagnosis for Northern Health by Age Category, 2010–2014 | | Figure 4.4 | Stage of HIV Infection at Diagnosis for Northern Health by Exposure Category, 2010–2014 | | Indicator 5 | HIV Cascade of Care | | Eiguro 5 1 | Estimated Cascada of Care for Northern Health, Vear Ending 2017 O4 | | Figure 5.2 | Estimated Cascade of Care for Northern Health by Gender, Year Ending 2015 Q4 | |--------------------|--| | Figure 5.3 | Estimated Cascade of Care for Northern Health by Age Category, Year Ending 2015 Q4 | | Figure 5.4 | Estimated Cascade of Care for Northern Health by Мsм Status, Year Ending 2015 Q4 | | Figure 5.5 | Estimated Cascade of Care for Northern Health by Age Category and Мsм Status, | | | Year Ending 2015 Q4 | | Figure 5.6 | Estimated Cascade of Care for Northern Health by Pwid Status, Year Ending 2015 Q4 | | Figure 5.7 | Estimated Cascade of Care for Northern Health by Hsda, Year Ending 2015 Q4 | | Indicator 6 | Programmatic Compliance Score (PCS) | | Table 2 | Probability of Mortality, Immunologic Failure and Virologic Failure Based on the Programmatic Compliance Score | | Figure 6.1 | Pcs Components for Northern Health, 2014 Q1–2015 Q4 | | | First-Year CD4 Measurement | | | First-Year VL measurement | | | Baseline Resistance Testing | | | Recommended Antiretroviral Therapy (ART) | | | Baseline CD4 ≥ 200 cells/μL | | | Suppression at 9 Months | | Figure 6.2 | Historical Trends for Pcs Score for Northern Health, 2014 Q1–2015 Q4 | | Indicator 7 | New Antiretroviral Therapy Starts in Northern Health | | Figure 7 | BC-CfE Drug Treatment Program Enrollment: | | | New Antiretroviral Participants for Northern Health, 2014 Q1–2015 Q4 | | Indicator 8 | CD4 Cell Count at ART Initiation | | Figure 8 | CD4 Cell Count at Art Initiation for Northern Health, 2014 Q1–2015 Q4 | | Indicator 9 | Active and Inactive Drug Treatment Program (DTP) Participants | | Table 3 | Distribution of People on Art in Northern Health, 2015 Q4 | | Figure 9 | Active and Inactive DTP Participants for Northern Health, 2014 Q1–2015 Q4 | | Indicator 10 | Antiretroviral Adherence | | Figure 10 | Distribution of Individuals by Adherence Level in 1st Year of Therapy,
Based on Pharmacy Refill Compliance for Northern Health, 2014 Q1–2015 Q4 | | Indicator 11 | Resistance Testing and Results | | Figure 11 | Cumulative Resistance Testing Results by Resistance Category for Northern Health, 2014 Q1–2015 Q4 | | Indicator 12 | AIDs-Defining Illness | | Figure 12 | AIDS Case Rate and Reports for Northern Health, 2007–2014 | | Indicator 13 | HIV-Related Mortality | | Figure 13 | HIV-Related Deaths by Year for Northern Health, 2004–2011 | | | | | | | ## Acknowledgements and Contributions British Columbia Centre for Excellence in HIV/AIDS (BC-CFE): The BC-CFE is responsible for the conception, preparation and ongoing review of this quarterly report. The BC-CFE provides the data and outputs for Indicators 5 (HIV Cascade of Care), 6 (Programmatic Compliance Score), 7 (New Antiretroviral Starts), 8 (CD4 Cell Count at ART Initiation), 9 (Active and Inactive Drug Treatment Program Participants), 10 (Antiretroviral Adherence Level), 11 (Resistance Testing Results by Resistance Category), 12 (AIDS-Defining Illness), and 13 (HIV-Related Mortality). The BC-CFE database provides PVL and CD4 cell count testing data, as well as ART use. All PVL measurements in BC are performed at the St Paul's Hospital virology laboratory, thus PVL data capture is 100%. An estimated 80% of all CD4 count measurements performed in the province are captured in the BC-CFE data holdings. The STOP HIV/AIDS Technical Monitoring Committee–BC-CFE is responsible for oversight of the monitoring report. Ana Prado writes and compiles the monitoring report. Guillaume Colley, Dr. Viviane Lima and Nada Gataric perform analysis of Indicators 5–13. James Nakagawa is responsible for publishing and editing. This report was conceived and guided by Dr. Julio Montaner. British Columbia Centre for Disease Control (BCCDC): The BCCDC provides the data and outputs for Indicator 1 (HIV Testing Episodes), Indicator 2 (HIV Testing Rate), Indicator 3 (New HIV Diagnoses), Indicator 4 (Stage of HIV at Diagnosis) and Indicator 12 (AIDS-Defining Illness). The BCCDC is the single provincial agency that centralizes all HIV surveillance through the Public Health Microbiology and Reference Laboratory, which does more than 90% of all HIV screening tests in BC and all confirmatory testing. Theodora Consolacion and Dr. Jason Wong are responsible for outputs for Indicators 1–4. #### Other Data Sources: The above databases were supplemented with: - (I) The BC Vital Statistics database which was used to calculate Indicator 5. The HIV Cascade of Care and Indicator 13. HIV-Related Mortality. - (II) Linkage and preparation of the de-identified individual-level database used for calculating Indicator 5. The HIV Cascade of Care was
facilitated by the British Columbia Ministry of Health. - (III) The Statistics Canada database: BC and HIV-positive population counts were acquired through the statistics Canada website to calculate HIV-specific mortality rates for Indicator 13. HIV-Related Mortality. ## Membership of the STOP HIV/AIDS Technical Monitoring Committee-BC-CfE Dr. Rolando Barrios, Chair, BC-CFE Kate Heath, BC-CFE Bohdan Nosyk, BC-CFE Viviane Dias Lima, BC-CFE Irene Day, BC-CFE Dr. Jason Wong, BCCDC Dr. Mel Kradjen, BCCDC Salman Klar, FHA Jennifer May-Hadford, іна James Haggerstone, NHA Dr. Neora Pick, PHSA Dr. Reka Gustafson, vсна Melanie Rusch, VIHA # The Seek and Treat for Optimal Prevention (STOP) HIV/AIDS BC Provincial Program: A Note on Monitoring and Interpreting HIV Indicators The Seek and Treat for Optimal Prevention (STOP) of HIV/AIDS programme is a provincial initiative to improve HIV diagnosis and care delivery in BC through increased HIV-specific funding to all Health Service Delivery Areas (HSDA'S) across BC. The STOP provincial programme is an expansion of a four-year STOP pilot project which was implemented in two Health Service Delivery Areas in March 2010; the Vancouver HSDA which bears the largest burden of the HIV epidemic in the province and the Northern Interior HSDA which bears a high burden of HIV-related mortality. The STOP pilot project demonstrated the urgent need for improved efforts in early diagnosis of HIV and timely initiation of antiretroviral therapy (ART) initiation. The expansion to a province-wide programme was announced on November 30th 2013 by the BC Ministry of Health with roll out of funding beginning on April 1st, 2013. This funding is intended to be used in the implementation and evaluation of HIV-related diagnosis and care initiatives within individual HA's. Goals of the project include: 1. A reduction in the number of new HIV infections in BC; 2. Improvements in the quality, effectiveness, and reach of HIV prevention services; 3. An increase in early diagnosis of HIV; 4. A reduction in AIDs cases and HIV-related mortality. The goals of HA-led STOP-funded initiatives are to work toward achieving these goals. To these ends some outcome measures or indicators of progress have been drafted that should be considered in the design and implementation phases of these initiatives. ## HIV Testing Episodes and Rates In this section, the number of HIV test episodes and point of care (POC) HIV tests conducted each quarter in BC is shown. In general terms the goal is to increase the number of tests performed and to maximize testing efficiency. Test episodes are allocated by region according to where the test is performed. #### Indicator 1. HIV Testing Episodes Figure 1.1 HIV Test Episodes for Northern Health Figure 1.2 HIV Test Episodes by Gender for Northern Health 1,2 1.4 -1.3 -1.2 -1.1 -# HIV Test Episodes (thousands) 1.0 -0.9 -< 30 8.0 0.7 0.6 0.5 30-39 0.4 ≥ 50 0.3 40-49 0.2 -Q2 Q3 Q4 Q1 Q2 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q3 Q4 Q4 2011 2012 2013 2014 2015 < 30 0.8 0.9 0.9 0.9 0.9 1.0 1.0 1.0 1.0 1.0 0.9 HIV Test Episodes by Age Category for Northern Health 1,2 Figure 1.3 0.4 0.5 0.5 0.6 0.6 0.6 0.7 0.9 0.8 0.8 0.9 1.3 0.4 0.5 0.5 0.5 0.4 0.6 0.5 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.4 0.5 0.5 0.5 0.6 0.6 0.6 > 0.4 0.4 0.5 #### Limitations: 30-39 40-49 ≥ 50 - Repeat tests in individuals who test using various identifiers may not be identified and these individuals may be counted more than once. - Poc testing data are available from the fourth quarter of 2010 forward. - Testing does not include point of care tests. Data Source: The BC Public Health Microbiology and Reference Laboratory (BCPHMRL) courtesy of the BC Centre for Disease Control (BCCDC). Figure 1.6 HIV Test Episodes for Non-prenatal Females in Northern Health by HSDA 1.2 ## Indicator 2. HIV Testing Rates Figure 2.1 Rate of HIV Testing for Northern Health and HSDAs ² Figure 2.2 Rate of HIV Testing by Gender for Northern Health ² Figure 2.3 Rate of HIV Testing by Age Category for Northern Health $^{\rm 2}$ 6000 -5700 -5400 -5100 -4800 -4500 -30-39 4200 -HIV Testing Episodes per 100,000 Population 3900 -3600 -3300 -3000 -2700 -40-49 2400 < 30 2100 -1800 -1500 -≥ 50 1200 900 2009 2010 2011 2012 2013 2014 2015 2611.1 3124.4 5237.2 2400.7 2473.0 2987.6 3198.0 3479.5 < 30 30-39 4263.7 4336.5 4446.3 4787.2 5784.7 5993.3 **2541.9** 1244.6 2670.1 1292.7 3210.2 1980.1 3609.2 2720.3 4328.7 3590.4 40-49 2448.1 5069.0 4363.8 1199.6 Testing does not include point of care tests. ## New HIV Diagnoses Trends in HIV diagnoses by gender and exposure category are described. Interpreting HIV diagnoses must be done with consideration that trends are influenced by both changes in testing rate as well as changes in transmission rates. It is important to note that new HIV diagnoses cases and rates are not synonymous with HIV incidence as a person may have become infected with HIV long before they tested positive for HIV. However, as there is no reliable method for measuring HIV incidence, we follow trends in HIV diagnoses. #### Indicator 3. New HIV Diagnoses ³ Data Source: BCCDC When present, "By Provider Address" is graphed as dashed line in same colour. Figure 3.3 New HIV Diagnoses for Northern Health by Age Category ³ # HIV Diagnoses 30-39 40-49 Q1 Q2 Q3 Q4 Q3 Q4 Q1 Q2 Q1 Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1 Q2 Q3 Q4 2011 2014 2012 2013 2015 0 < 30 0 0 0 30-39 0 0 0 0 0 0 0 0 0 0 0 40-49 2 0 0 2 0 ≥ 50 0 0 0 Figure 3.4 New HIV Diagnoses for Northern Health by Exposure Category 3,4 # HIV Diagnoses **PWID MSM** Other NIR/Unknown Q4 Q1 Q2 Q3 Q1 02 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 2011 2012 2013 2014 2015 0 MSM (men who have sex with men) 2 PWID (persons who inject drugs) 5 3 3 0 0 0 0 0 0 0 3 HET (heterosexual) 0 0 0 0 Other (other exposure identified) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NIR/Unknown (no identified exposure) ³ Data Source: BCCDC. When present, "By Provider Address" is graphed as dashed line in same colour. ⁴ MSM=men who have sex with men; PWID=people who inject drugs; HET=heterosexual. NIR=No identified risk/exposure. ## Stage of HIV Infection at Diagnosis Classification of stage of HIV infection, in the absence of information regarding recent testing history, is reliant on clinical information available at the time of diagnosis, including first CD4+ cell count, laboratory results suggestive of acute HIV infection, and clinical presentation with an AIDS-defining illness (Table 1). The benefits of Treatment as Prevention (TasP) are maximized when antiretroviral therapy (ART) is initiated at high CD4 cell counts. Accordingly, it is preferable that individuals newly diagnosed with HIV be in the early stages of HIV infection (stage 0 or 1) to allow for early ART initiation. N.B. Interpretation of Stage of HIV Infection at Diagnosis should proceed with caution. Early increases in diagnosis at late stage (i.e., low CD4 counts) may represent a "catching up" of previously missed long term infected individuals rather than a trend toward diagnosis at later stage of infection. Indicator 4. Stage of HIV Infection at Diagnosis Table 1 Staging Classifications of Infection at Time of HIV Diagnosis Based on CDC HIV Surveillance Case Definitions | Stage | Criteria | | | | | |---------|--------------------|---------|--|----------|------------------------| | 0 | previous i | negativ | ria met for acute
ve or indeterminat
firmed positive H | te HIV t | test within 180 | | 1 | | | CD4 ≥500 | | N. AIDC | | 2a | | | CD4 350-499 | and | No AIDS case report | | 2b | N anct? | | CD4 200-349 | | торогс | | 3 | Stage 0
not met | and | (CD4 <200 | or | AIDS case report) | | Unknown | | | No available
CD4 | and | No AIDS case
report | Figure 4.1 Stage of HIV Infection at Diagnosis for Northern Health, 2010–2014 ⁵ Figure 4.2 Stage of HIV Infection at Diagnosis by Gender for Northern Health, 2010–2014 ⁵ Data Source: вссос Figure 4.3 Stage of HIV Infection at Diagnosis by Age Category for Northern Health, 2010–2014 ⁵ Figure 4.4 Stage of HIV Infection at Diagnosis by Exposure Category for Northern Health, 2010–2014 5.6 ⁵ Data Source: BCCDC ⁶ MSM=men who have sex with men; PWID=people who inject drugs; HET=heterosexual. NIR=No identified risk/exposure. #### HIV Cascade of Care #### Indicator 5. HIV Cascade of Care The success of seek, test, treat and retain (STTR) strategies like STOP is reliant on early diagnosis of HIV, linking newly diagnosed HIV-positive persons with ongoing care, retaining persons in HIV-care; initiating ART based on best evidenced practices and maintaining optimal ART adherence to ensure a suppressed viral load. These stages of HIV-care can be summarized as: 1. HIV diagnosis, 2. Linked to HIV care, 3. Retained in HIV care, 4. On ART, 5. Adherent to ART and 6. Achieving a suppressed VL; collectively, they are referred to as the cascade of care. Leakage between any of these stages of HIV-care means a reduction in the potential of ART as a benefit to the HIV-positive individual and as an HIV transmission prevention method on a population level. Thus, when interpreting trends in the cascade of care, we strive to see increases along each step of the cascade of care (i.e. reduced attrition) with the ultimate goal being 100% within each stage of the cascade. Monitoring the Cascade of Care provides a picture as to where deficiencies lie in the delivery and uptake of HIV-care. In this section we present the cascade of care for the period 2015 Q1–2015 Q4 in Northern Health and stratified by sex and age. - 7 Data is for the period 2015 Q1–2015 Q4. Data Sources: - i British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). - ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). Limitations: на assignment is based on the most recent на of residence of the patient, if not available of the нiv-care provider. If
the most recent на of residence is not updated then the designated на may be incorrect. NB: Transgender have been assigned to their biological sex. Limitations: HA assignment is based on the most recent HA of residence of the patient, if not available of the HIV-care provider. If the most recent HA of residence is not updated then the designated HA may be incorrect. ⁸ Data is for the period 2015 Q1–2015 Q4. Data Sources: i British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). Limitations: HA assignment is based on the most recent HA of residence of the patient, if not available of the HIV-care provider. If the most recent HA of residence is not updated then the designated HA may be incorrect. Recent updates to the DTP database have allowed for more comprehensive information on HIV risk group category. As a result, 2014 Q4 data may differ significantly from preceding reports in terms of total numbers ascribed to each risk group. ⁹ Data is for the period 2015 Q1-2015 Q4. Data Sources: i British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). Data is for the period 2015 Q1-2015 Q4. Data Sources: Limitations: HA assignment is based on the most recent HA of residence of the patient, if not available of the HIV-care provider. If the most recent HA of residence is not updated then the designated HA may be incorrect. Recent updates to the DTP database have allowed for more comprehensive information on HIV risk group category. As a result, 2014 Q4 data may differ significantly from preceding reports in terms of total numbers ascribed to each risk group. British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). Limitations: HA assignment is based on the most recent HA of residence of the patient, if not available of the HIV-care provider. If the most recent HA of residence is not updated then the designated HA may be incorrect. Recent updates to the DTP database have allowed for more comprehensive information on HIV risk group category. As a result, 2014 Q4 data may differ significantly from preceding reports in terms of total numbers ascribed to each risk group. ⁹ Data is for the period 2015 Q1-2015 Q4. Data Sources: i British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). Limitations: HA assignment is based on the most recent HA of residence of the patient, if not available of the HIV-care provider. If the most recent HA of residence is not updated then the designated HA may be incorrect. Recent updates to the DTP database have allowed for more comprehensive information on HIV risk group category. As a result, 2014 Q4 data may differ significantly from preceding reports in terms of total numbers ascribed to each risk group. ⁹ Data is for the period 2015 Q1-2015 Q4. Data Sources: i British Columbia Centre for Excellence Drug Treatment Program (DTP) Database (ARV use, VL and CD4 count). ii Administrative data (ex. MSP billings; hospitalization data from the Discharge Abstract Database (DAD)). ## Programmatic Compliance Score Indicator 6. Programmatic Compliance Score (PCS) The Programmatic Compliance Score (PCS) is a summary measure of risk of future death, immunologic failure and virologic failure from all causes for people who are starting ART for the first time. It is composed of patient- and physician-driven effects. PCs scores range from o−6 with higher scores indicative of poorer health outcomes and greater risk of death. Table 1 provides mortality, immunologic failure and virologic failure probabilities for given PCs scores. We interpret an individual with a PCs≥4 as being 22 times more likely to die, almost 10 times more likely to have immunologic failure and nearly 4 times as likely to demonstrate virologic failure compared to those individuals with a PCs score of o. A detailed description of how the PCs score is calculated and its validation can be found in the technical report. In short, PCs scores are calculated by summing the results (yes=1, no=0) of six un-weighted non-performance indicators based on IAS−USA treatment guidelines: - having <3 CD4 cell count tests in the first year after starting antiretroviral therapy (ART); - 2. having <3 plasma viral load (VL) tests in the first year after starting ART; - 3. not having drug resistance testing done prior to starting ART; - 4. starting on a non-recommended ART regimen; - 5. starting therapy with CD4<200 cells/μL; and - 6. not achieving viral suppression within 9 months since ART initiation. In this section we provide PCS scores and their components over time for the province of BC. A decline to 0%, (i.e., all individuals having a score of o) is the eventual goal. Table 2. Probability of Mortality, Immunologic Failure and Virologic Failure based on the Programmatic Compliance Score | Programmatic
Compliance Score | Mortality Risk Ratio
(95% Confidence Interval) | Immunologic Failure Risk
Ratio (95% CI) | Virologic Failure Risk Ratio
(95% CI) | |----------------------------------|---|--|--| | · | | | | | O (Best score) | 1 (-) | 1 (-) | 1 (-) | | 1 | 3.81 (1.73-8.42) | 1.39 (1.04–1.85) | 1.32 (1.05–1.67) | | 2 | 7.97 (3.70–17.18) | 2.17 (1.54–3.04) | 1.86 (1.46–2.38) | | 3 | 11.51 (5.28–25.08) | 2.93 (1.89–4.54) | 2.98 (2.16–4.11) | | 4 or more
(Worst score) | 22.37 (10.46–47.84) | 9.71 (5.72–16.47) | 3.80 (2.52–5.73) | Reference: Lima VD, Le A, Nosyk B, Barrios R, Yip B, et al. (2012) Development and Validation of a Composite Programmatic Assessment Tool for HIV Therapy. PLoS ONE 7(11): e47859. doi:10.1371/journal.pone.0047859 Figure 6.1 PCS Components for Northern Health, 2014 Q1–2015 Q4 10 Figure 6.2 Historical Trends for PCS Score for Northern Health, 2014 Q1-2015 Q4 10,11 Data Source: British Columbia Centre for Excellence Drug Treatment Program (DTP) Database. Limitations: CD4 cell count capture is approximately 80%. Each quarter's data is calculated as the sum of the 4 quarters leading up to it. e.g. 2013 Q1 is calculated from 2012 Q2 – 2013 Q1. NB: A score of o is the best score and a score of 4 or more is the worst score. ## Antiretroviral Uptake In this section we present trends in ART uptake, the number and proportion of new HIV treatment initiations and the number of active and inactive DTP participants. Trends in ART uptake should be interpreted under the consideration of changing BC HIV treatment guidelines. BC HIV treatment guidelines are updated regularly by the BC-CFE Therapeutic Guidelines Committee and reflect those of the International AIDS Society. Most recent changes were made in 2012 and HIV treatment is now recommended for all HIV-positive adults regardless of CD4 cell count; as evidence demonstrates that early initiation of HIV treatment maximizes both the individual's health outcomes as well as the potential of ART as a form of HIV transmission prevention at a population level. As such, trends in the number and proportion of persons on ART and new ART starts (in both naïve and experienced persons) are expected to increase over time at higher CD4 cell counts. #### Indicator 7. New Antiretroviral Therapy Starts in Northern Health Figure 7 BC-CfE Drug Treatment Program Enrollment: New ART Participants in Northern Health, 2014 Q1–2015 Q4 12 #### Indicator 8. CD4 Cell Count at ART Initiation Figure 8 CD4 Cell Count at ART Initiation of ART-Naïve DTP Participants in Northern Health, 2014 Q1-2015 Q4 13 The majority of cells in this figure have $n \le 5$, which is considered statistically insignificant as well as a possible risk to patient privacy. For this reason, this figure has been omitted. Authorized parties may contact the British Columbia Centre for Excellence in HIV/AIDS to obtain this information. Data Source: Drug Treatment Program Database Limitation: DTP participants are designated to an HA based on most current residence provided by the participant. ¹³ Data Source: Drug Treatment Program Database Limitations: CD4 cell count data is approximately 80% complete. ## Indicator 9. Active and Inactive DTP Participants Table 3. Distribution of People on ART for Northern Health, 2015 Q4 14 | Age | < 30 | 10 | |----------|--------|-----| | | 30-39 | 46 | | | 40-49 | 64 | | | ≥ 50 | 98 | | Gender | Male | 138 | | | Female | 80 | | Exposure | MSM | 30 | | | PWID | 117 | | Total | | 218 | | | | | Figure 9 Active and Inactive DTP Participants for Northern Health, 2014 Q1-2015 Q4 15 14 Data Source: Drug Treatment Program Database Limitation: DTP participants are designated to an HA based on most current residence provided by the participant. Recent updates to the DTP database provides for improved classification allowing some individuals previously classified as 'unknown' to be reclassified into specific risk groups. This update is in effect from 2014Q4 and may result in noticeable changes of numbers in each risk group category compared to previous reports. #### Definition: 'On antiretroviral therapy' defined as being on treatment in the current quarter 15 Active DTP participants: An individual who has had medication prescribed at least once in the preceding quarter. Inactive DTP participants: Persons no longer prescribed drugs through the HIV/AIDS Drug Treatment Program in the last quarter. #### Antiretroviral Adherence Level In this section we present trends in prescription
refill adherence levels for individuals in their first year of treatment. Given that the benefits of ART are compromised in the presence of imperfect ART adherence, we expect to see the proportion of persons on ART achieving near perfect adherence (ie. \geq 95%) to increase with time. Furthermore, it is important that trends in the proportion of ART users achieving prescription refill adherence of \geq 95% keep pace with new ART starts and increase among those continuing on ART. #### Indicator 10. Antiretroviral Adherence Figure 10 Distribution of Individuals by Adherence Level in 1st Year of Therapy, Based on Pharmacy Refill Compliance for Northern Health, 2014 Q1–2015 Q4 ¹⁶ The majority of cells in this figure have $n \le 5$, which is considered statistically insignificant as well as a possible risk to patient privacy. For this reason, this figure has been omitted. Authorized parties may contact the British Columbia Centre for Excellence in Hiv/Aids to obtain this information. ¹⁶ Data Source: Drug Treatment Program Database Limitation: Prescription refill adherence is used as a proxy for patient adherence. ## Resistance Testing and Results #### Indicator 11. Resistance Testing and Results In this section, we present trends in cumulative resistance testing by resistance category: Suppressed (where a DTP participant's viral load is too low to be genotyped); Wild Type (where no HIV treatment resistances were discovered), Never Genotyped, and Resistances to one, two, three, or four HIV treatment classes. Resistance testing prior to ART initiation is recommended in the BC HIV treatment primary care guidelines. Thus, it is expected that trends over time should find all persons enrolled in the DTP to have been genotyped. Trends over time should also show an increase in the proportion of DTP participants achieving a suppressed status and an increase in resistance testing should not lead to an increase in the number of ART resistances occurring. Figure 11 Cumulative Resistance Testing Results by Resistance Category for Northern Health, 2014 Q1–2015 Q4 ¹⁷ ¹⁷ Data Source: Drug Treatment Program Database Limitation: DTP participants are designated to a HA based on most current residence provided by the participant. ## AIDS-Defining Illness #### Indicator 12. AIDS-Defining Illness Improvements in ART and the expansion of ART province-wide has led to very low numbers of recorded AIDS cases across BC. However, interpreting trends in AIDS cases is challenging as AIDS reporting is passive in BC and it is likely that they are under-reported across all Health Authorities. In addition to under-reporting, methods of reporting AIDS cases are inconsistent across HA's and do not truly reflect the current reality of new AIDS diagnoses. Efforts will need to be made to improve under- and inconsistent reporting of AIDS cases across all HA's. The table below shows AIDS cases using three definitions. First, AIDS cases were defined as the number of physician-reported AIDS defining illness (ADI) in a given year. AIDS case reporting is a passive process and physicians can voluntarily report AIDS cases to the BCCDC or DTP. As such, we have plotted both BCCDC reports and DTP reported AIDS cases. We also show the proportion of persons initiating ART with a CD4<200 cells/µL. Data Source: DTP AIDS cases are obtained from the Drug Treatment Program Database; BCCDC AIDS cases are obtained from the BC-CDC; CD4<200 at ART initiation data came from the DTP database. Limitation: AIDs case reporting was investigated using 3 definitions: First, using AIDs cases reported in AIDs case report forms from the DTP; Second, using AIDs cases reported via the BCCDC and third, using a CD4 cell count of <200 cells/µL at time of ART initiation using DTP data. AIDs case reporting is passive in BC, thus; AIDs case reporting is not well captured. The DTP sends out AIDs reporting forms to physicians annually. The BCCDC uses DTP AIDs case reports as well as physician AIDs case reports made directly to the BCCDC. Interpreting AIDs case reports should be done with these limitations in mind. AIDs data is updated annually as very few AIDs cases reports are reported in general and trends would be difficult to notice if reported quarterly. ## HIV-Related Mortality ### Indicator 13. HIV-Related Mortality Evidence indicates that individuals who initiate treatment with recommended ART in a timely fashion may live near normal lifespans. Excess mortality among HIV positive persons is, therefore, an important measure of HIV care with a goal of minimizing HIV-related mortality in British Columbia. #### Limitation: ¹⁹ Data Source: BC Vital Statistics ^{1.} DTP participants are designated to an HA based on most current residence provided by the participant. ^{2.} Mortality data is updated annually. ^{3.} The most recent available data was used. ## Appendices | Gender Female Male 1.0 0.9 1.0 1.0 1.2 1.1 1.2 1.2 1.3 1.4 1.3 1.3 1.6 1.5 1.5 1.5 1.9 1.6 Male Other 0.9 0.8 0.8 0.8 1.1 1.0 1.0 1.1 1.2 1.2 1.1 1.2 1.4 1.3 1.3 1.4 1.6 1.4 Other 0.0 | Q3 (| Q2 (| Ç | 2015
Q1 | Q4 | Q3 | Q2 | 2014
Q1 | | Q3 | Q2 | 2013
Q1 | Q4 | Q3 | Q2 | 2012
Q1 | Q4 | Q3 | Q2 | 2011
Q1 | | Indicator 1:
Episodes (t | |---|--------------|-------|----|------------|-------|-----|------|------------|-----|------|-----|------------|-----|------|-----|------------|-----|-------|--------|---------------------|-------------|-----------------------------| | Male | 3.2 3 | .2 3 | 3. | 3.7 | 3.0 | 2.9 | 3.0 | 3.1 | 2.6 | 2.6 | 2.7 | 2.7 | 2.3 | 2.2 | 2.2 | 2.3 | 1.9 | 1.9 | 1.8 | 1.9 | ealth | Northern H | | Age | 1.6 1 | .6 1 | 1. | 1.9 | 1.5 | 1.5 | 1.5 | 1.6 | 1.3 | 1.3 | 1.4 | 1.3 | 1.2 | 1.2 | 1.1 | 1.2 | 1.0 | 1.0 | 0.9 | 1.0 | Female | Gender | | Age | 1.4 1 | .4 1 | 1. | 1.6 | 1.4 | 1.3 | 1.3 | 1.4 | 1.2 | 1.1 | 1.2 | 1.2 | 1.1 | 1.0 | 1.0 | 1.1 | 0.8 | 0.8 | 0.8 | 0.9 | Male | | | Northean | 0.0 | .0 0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | Other | | | POCHIV Tests (not in thousands) | 1.1 1 | .0 1 | 1 | 1.0 | 1.0 | 1.0 | 0.9 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.8 | < 30 | Age | | POCHIV Tests | 0.6 | .6 0 | 0 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.5 | 0.6 | 0.4 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.5 | 30-39 | | | POCHIV Tests | 0.5 | .5 0 | 0 | 0.6 | 0.5 | 0.4 | 0.4 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 40-49 | | | Northeast | 0.9 | .9 0 | 0 | 1.3 | 0.9 | 0.8 | 0.8 | 0.9 | 0.7 | 0.6 | 0.6 | 0.6 | 0.5 | 0.5 | 0.4 | 0.5 | 0.3 | 0.3 | 0.3 | 0.4 | ≥ 50 | | | Female Male 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.3 0.2 0.2 0.0 <t< td=""><td>25 1</td><td>71 1:</td><td>7</td><td>183</td><td>102</td><td>91</td><td>137</td><td>139</td><td>110</td><td>.51</td><td>23</td><td>137</td><td>65</td><td>60</td><td>74</td><td>83</td><td>52</td><td>54</td><td>49</td><td>19</td><td></td><td></td></t<> | 25 1 | 71 1: | 7 | 183 | 102 | 91 | 137 | 139 | 110 | .51 | 23 | 137 | 65 | 60 | 74 | 83 | 52 | 54 | 49 | 19 | | | | Northern Interior 0,0
0,0 | 0.5 | .5 0 | 0 | 0.4 | 0.4 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | | Northeast | | Northern Interior 1.0 | 0.3 | .2 (| 0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.3 | 0.2 | 0.2 | 0.3 | 0.3 | 0.2 | 0.3 | 0.2 | 0.2 | | Female | | Female Male 0.5 0.4 0.5 0.6 0.7 0.6 0.6 0.7 0.7 0.7 0.8 0.8 0.7 0.9 0.8 0.9 0.9 0.9 1.3 1.0 0.9 0.0 0.8 <t< td=""><td>0.0</td><td>0.0</td><td>0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td></td><td>Male</td></t<> | 0.0 | 0.0 | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | Male | | Male 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.9 0.8 0.8 0.1 1.0 0.7 0.7 0.7 0.7 0.9 0.8 0.8 0.1 0.7 0.7 0.7 0.7 0.7 0.6 0.0 0.3 </td <td>2.0 1</td> <td>.0 2</td> <td>2</td> <td>2.6</td> <td>1.9</td> <td>1.8</td> <td>1.9</td> <td>2.0</td> <td>1.6</td> <td>1.6</td> <td>1.6</td> <td>1.6</td> <td>1.4</td> <td>1.3</td> <td>1.2</td> <td>1.4</td> <td>1.1</td> <td>1.0</td> <td>1.0</td> <td>1.0</td> <td>nterior</td> <td>Northern Ir</td> | 2.0 1 | .0 2 | 2 | 2.6 | 1.9 | 1.8 | 1.9 | 2.0 | 1.6 | 1.6 | 1.6 | 1.6 | 1.4 | 1.3 | 1.2 | 1.4 | 1.1 | 1.0 | 1.0 | 1.0 | nterior | Northern Ir | | Male 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.9 0.8 0.8 0.1 1.0 0.7 0.7 0.7 0.7 0.9 0.8 0.8 0.1 0.7 0.7 0.7 0.7 0.7 0.6 0.0 0.3 </td <td>1.0</td> <td></td> | 1.0 | Northwest | 0.9 | Female | 0.7 | Male 0.2 | 0.4 (| Male | 0.3 0 | All Northern Health | <i>3.5</i> 0 | .5 0 | U. | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.2 | J.Z | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | | | | | | | | Northeast | | | | ; | 2015 | | 2014 | 2 | 3 | 201 | | 2012 | | 2011 | : | 10 | | - | | esting _] | Rate of HIV | Indicator 2: | | Northern Interior 2360.2 2448.6 2566.0 3236.8 3807.4 4654.1 5280.7 Northwest | | | | L | 334.1 | 4 | 25.8 | 38 | 3 | 3332 | | 2920.7 | : | 32.9 | 24 | 8.6 | 234 | 0 | 2291. | | n Health | All Norther | | Northwest | | | |) | 918.0 | 2 | 47.3 | 25 | 4 | 2621 | | 2569.7 | : | 43.4 | 23 | 6.2 | 224 | 8 | 2289. | | | Northeast | | Gender Female 2412.8 2543.4 2623.7 3116.9 3614.4 4192.2 4692.6 <th< td=""><td></td><td></td><td></td><td>7</td><td>280.7</td><td></td><td>54.1</td><td>46</td><td>4</td><td>3807</td><td></td><td>3236.8</td><td>:</td><td>66.0</td><td>25</td><td>8.6</td><td>244</td><td>2</td><td>2360.</td><td></td><td>terior</td><td>Northern In</td></th<> | | | | 7 | 280.7 | | 54.1 | 46 | 4 | 3807 | | 3236.8 | : | 66.0 | 25 | 8.6 | 244 | 2 | 2360. | | terior | Northern In | | Age | | | | 3 | 910.8 | 3 | 82.1 | 34 | 1 | 3094 | | 2641.3 | | 59.0 | 22 | 9.7 | 224 | 2 | 2160. | | | Northwest | | Age < 30 2400.7 247.3 (30.30.39) 2611.1 (29.87.2) 2987.2 (31.24.3) 319.0 (31.24.3) 347.5 (31.24.3) 347.5 (31.24.3) 347.5 (31.24.3) 319.0 (31.24.3) 347.5 (31.24.3) 319.0 (31.24.3) 347.5 (31.24.3) 319.0 (31.24.3) 347.5 (31.24.3) 319.0 (31.24.3) 347.5 (31.24.3) 319.0 (31.24.3) < | | | | 5 | 692.6 | 4 | 92.2 | 41 | 4 | 3614 | | 3116.9 | | 23.7 | 26 | 3.4 | 254 | 8 | 2412. | | Female | Gender | | 30–39 | | | | 5 | 927.6 | 3 | 30.9 | 34 | 1 | 3023 | | 2691.9 | : | 13.7 | 22 | 1.9 | 212 | 0 | 2107. | | Male | | | 30–39 | | | | ; | 479.5 | 3 | 98.0 | 31 | 4 | 3124 | | 2987.6 | : | 11.1 | 26 | 3.0 | 247 | 7 | 2400. | | < 30 | Age | | 40–49 2448.1 2541.9 2670.1 3210.2 3609.2 4328.7 5069.0 4308.8 4363.8 250 | | | | 3 | 993.3 | į | 84.7 | 57 | 2 | 5237 | | 1787.2 | | 46.3 | 44 | 6.5 | 433 | 7 | 4263. | | 30-39 | C | | ≥ 50 1199.6 1244.6 1292.7 1980.1 2720.3 3590.4 4363.8 | | | |) | 069.0 | | 28.7 | 43 | 2 | 3609 | | 3210.2 | | 70.1 | 26 | 1.9 | 254 | 1 | 2448. | | 40-49 | | | Indicator 3: New HIV Diagnoses Q1 Q2 Q3 Q4 Q1 Q2 Northern Health By Client Residence 3 10 5 5 5 5 4 3 0 3 8 3 3 1 5 4 1 2 Gender Female 1 5 1 3 1 2 0 0 0 3 1 0 0 1 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | | | 3 | 2720 | | 1980.1 | | | | | | | | | ≥ 50 | | | Northern Health By Client Residence 3 10 5 5 5 4 3 0 3 8 3 3 1 5 4 1 1 2 By Provider Address 3 9 5 6 5 4 3 0 3 8 3 3 1 5 3 1 1 2 Gender Female 1 5 1 3 1 2 0 0 0 3 1 0 0 0 1 1 0 0 0 0 3 1 0 0 0 1 1 0 0 0 0 3 1 0 0 0 1 1 0 0 0 0 3 1 0 0 0 1 1 0 | By Provider Address 3 9 5 6 5 4 3 0 3 8 3 3 1 5 3 1 1 2 Gender Female 1 5 1 3 1 2 0 0 0 3 1 0 0 0 1 1 0 0 0 0 1 1 0 | Gender Female Male 1 5 1 3 1 2 0 0 0 3 1 0 0 0 1 1 0 0 Age <30 | 2 | Northern H | | Male 2 5 4 2 4 2 3 0 3 5 2 3 1 5 3 0 1 2 Age <30 | 2 | | | | | | | | | | 0 | | | 5 5 |
5 | | 3 | lress | er Add | | , | | | Age <30 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 3] | 0 : | 0 | 0 | . 2 | 3 1 | 1 | 5 | 1 | | | | | Gender | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 | 2 | 1 | 0 | 3 | 5 | 1 | 2 3 | 5 2 | 3 | 0 | 3 | 2 | 2 4 | 4 | 5 | 2 | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 0 | 2 (| 0 2 | 0 | 0 | . 0 | 2 1 | 1 | 4 | 0 | | | 0 | < | Age | | Exposure ≥ 50 1 1 1 1 3 1 1 0 2 1 3 1 0 4 2 0 0 0 Exposure MSM 0 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 PWID 2 5 1 3 3 2 1 0 0 2 0 2 1 0 0 1 0 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 |) 1 | 5 (| 0 ! | 0 | 0 |) 1 | 2 (| 1 | 4 | 1 | | | -39 | 30 | | | Exposure MSM 0 1 1 1 0 0 1 0 1 1 0 1 1 0 0 0 0 0 PWID 2 5 1 3 3 2 1 0 0 2 0 2 1 0 0 1 0 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |) 1 |) (| 1 (| 0 | 2 | . 2 |) 1 | 2 | 1 | 1 | | | -49 | 40 | | | PWID 2 5 1 3 3 2 1 0 0 2 0 2 1 0 0 1 0 0 | 1 | 0 | 0 | 0 | 2 | 4 | 0 | 3 1 | 3 | 2 | 0 | 1 | 1 | 1 3 | 1 | 1 | 1 | | | 0 | ≥ | | | | _ | 0 | 0 | 0 | 1 | 1 | 0 |) 1 | (| 1 | 0 | 1 | 0 | 1 (| 1 | 1 | 0 | | | M | M | Exposure | | HET 1 3 3 1 2 2 0 0 2 5 2 0 0 3 1 0 0 1 | _ | 0 | 0 | 1 | 0 | 0 | 1 |) 2 | 2 (| 0 : | 0 | 1 | 3 2 | 3 3 | 1 | 5 | 2 | | | /ID | P | | | | _ | 1 | 0 | 0 | 1 | 3 | 0 | 2 0 | 5 2 | | 0 | 0 | 2 2 | 1 2 | 3 | 3 | 1 | | | | | | | Other 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 | _ | 0 | 0 | 0 | 1 | 1 | 0 | 0 |)] | 0 (| 0 | 0 | 0 |) (| 0 | 0 | 0 | | | | | | | NIR/Unknown 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 | _ | | | | | | | | | | | | | | | | | | nown | | | | | | | *** | w.D | | | , | 43: | | 2012 | | Q3 | 0/ | 20 | | na (| 32 (| | 2013 | 02 | 02 | | 2014 | | 01 | , 0 | | 015 | 22 / | 7 2 | 04 | |--|--|--|--|------------------------------|----------------------------|--|-------|-------------|------|--|--|-----|-------------|---|--|----------------|----------------|---|---|----------------|---------|---|-----------------|--------|------|---|----------------|----------------|----------------------|--| | Indicator 3 Northeast | : Ne | W HI | | | | | side1 | | 0 | $\frac{Q^2}{1}$ | 0 | | l Q | 0 | 0 (| $\frac{25}{0}$ | $\frac{Q4}{0}$ | $\frac{Q_1}{0}$ | Q2
0 | Q3
0 | Q4
0 | 0 | $\frac{Q^2}{0}$ | | | 0 | $\frac{21}{0}$ | $\frac{Q2}{0}$ | $\frac{\sqrt{3}}{1}$ | $\frac{Q4}{0}$ | | Northeast | | | | - | | | Addr | | 0 | 1 | 0 | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 0 | 0 | 0 | 1 | 0 | | Northern II | nteri | or | | - | | | sidei | | 0 | 5 | | | | 2 | 4 | 2 | 0 | 3 | 6 | 2 | 3 | 0 | 2 | | | 1 | 1 | 1 | 1 | 1 | | | | - | | • | | | Addr | | 0 | 4 | | | | 2 | 4 | 2 | 0 | 3 | 7 | 2 | 3 | 0 | 3 | | 3 | 1 | 1 | 1 | 1 | 1 | | Northwest | | | | , | | | sidei | | 3 | 4 | 1 | . 1 | | 3 | 0 | 1 | 0 | 0 | 2 | 1 | 0 | 1 | 3 |] | l | 0 | 0 | 1 | 0 | 0 | | | | | 1 | Ву Р | rovi | der A | Addr | ess | 3 | 4 | 1 | 2 | 2 . | 3 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 2 | (|) | 0 | 0 | 1 | 0 | 0 | | Indianton 4 | . Cta | ~~ ~6 | 1113 | 7 T | c: | | 4 D. | 12. | Indicator 4: | | _ | | | | OII & | | | | | | , | r.1. | | | | | 0 | | | 2 | 0.2 | 0 | | | | 10 | 10 | | | | | | orthe
'11 | | 1ean
13 | in
'14 | ' 10 | | emal
'12 | | ' 14 | ' 10 | | Iale
'12 | ' 13 | ' 14 | '10 | | 0 ye: | | ' 14 | | | 9 yea
12 ' | | 14 | | | 19 y€
'12 | | ' 14 | | Stage 0 | 2 | 3 | 0 | 3 | 4 | 0 | 2 | 0 | 2 | 2 | 2 | 1 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 2 | 0 | 1 | 1 | 0 | 0 | 0 | | Stage 1 | 2 | 5 | 5 | 2 | 0 | 0 | 2 | 1 | 0 | 0 | 2 | 3 | 4 | 2 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 2 | 1 | 1 | 0 | 0 | | Stage 2a | 4 | | 2 | 1 | 3 | 1 | 1 | 1 | 0 | 0 | 3 | 1 | 1 | 1 | 3 | 0 | 2 | 0 | 1 | 2 | 4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | Stage 2b | 1 | 6 | 2 | 1 | 2 | 1 | 2 | 1 | 0 | 1 | 0 | 4 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 2 | 1 | 0 | 2 | | Stage 3 | 6 | 4 | 2 | 9 | 3 | 4 | 1 | 0 | 2 | 0 | 2 | 3 | 2 | 7 | 3 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 1 | 1 | 0 | | Unknown | 0 | 4 | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | 1 | 1 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | | Total | 15 | 24 | 12 | 17 | 14 | 6 | 10 | 3 | 4 | 3 | 9 | 14 | 9 | 13 | 11 | 1 | 6 | 1 | 1 | 4 | 5 | 9 | 1 | 7 | 2 | 6 | 5 | 4 | 2 | 2 | | | | | 0 yea | | | | | ИSМ | | | | | WID | | | | | rose | | | | | Expo | | | | | Jnkr | | | | | '10 | '11 | | | | | | | | | | | | | | | | | '13 | '14 | | | 12 ' | | _ | | | '12 | | '14 | | Stage 0 | 1 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | Stage 1 | 0 | 2 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 2 | 4 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Stage 2a | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 1 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Stage 2b
Stage 3 | $\begin{vmatrix} 0 \\ 2 \end{vmatrix}$ | 1 0 | 0 | 1
5 | 0 3 | 0 | 2 | 0 | 0 | 0 | 0
4 | 0 2 | 1
1 | 0 | 1 | 1 2 | 1 | 1
1 | 1 | 1 2 | 0 | 1 | 0 | 0
1 | 0 | 0 | 0 | 0 | 0 | 0 | | Unknown | $\begin{vmatrix} 2 \\ 0 \end{vmatrix}$ | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | | Total | 3 | _ | 6 | 7 | 6 | 1 | 3 | 1 | 3 | 2 | 9 | 11 | 6 | 4 | 2 | 4 | 8 | 4 | 9 | 6 | 0 | 1 | 0 | 1 | 3 | 1 | 1 | 1 | 0 | 1 | | Total | 3 | 1 | U | , | O | 1 | , | 1 | 3 | 2 | | 11 | U | - | 2 | - | O | 1 | | O ₁ | U | 1 | U | 1 | 5 | 1 | 1 | 1 | U | 1 | | Indicator 5 | 5: HI | V Ca | scac | le o | f Ca | re | | D | IAGN | NOSE | D | | LI | NKE | D | F | RETA | INEI |) | | ON A | ART | | ADI | IERI | ENT | 5 | UPP | RESS | ED | | Northern I | Heal | th | | | | | | | | 29 | 91 | | | 27 | 6 | | | 241 | l | | | 220 | | | | 196 | | | 1 | 27 | | Age Catego | ory | | | | | | | | | | 21 | | | 1 | | | | 14 | | | | 11 | | | | 7 | | | | 3 | | | | 30-3 | | | | | | | | | 50 | | | 5 | | | | 53 | | | | 48 | | | | 43 | | | | 27 | | | | 40-4 | | | | | | | | | 75 | | | 7 | | | | 65 | | | | 60 | | | | 53 | | | | 30 | | Ago Cotogo | O 44 7 7 | ≥ 50
MSN | | | | 30 | | | | 13 | 5 | | | 12
≤ | | | | 109
≤ 5 | | | | 101
≤ 5 | | | | 93
≤ 5 | | | | 67
≤ 5 | | Age Catego
and MSM | 31 y | IVISI | VI. | | | 0-39 | 9 | | | | 5 | | | _
≤ | | | | ≥ .
≤ 5 | | | | ≤ 5
≤ 5 | | | | ≥ 5
≤ 5 | | | | ≤ 5
≤ 5 | | Status | | | | | | 0-49 | | | | _ | 7 | | | | 7 | | | - 6 | | | | 6 | | | | 6 | | | _ | 2 | | | | | | | | 50 | | | | 2 | 25 | | | 2 | | | | 21 | | | | 19 | | | | 16 | | | | 12 | | | | Non | -MS | SM | | 30 | | | | | 6 | | | | | | | | | | | | | | | 1 | | | | 0 | | | | | | | | | | | | | U | | | | 6 | | | 3 | 5 | | | 2 | | | | | | | | 22 | | | | | | | 3 | 0-39 | 9 | | | 4 | 10 | | | 4 | | | | 40 | | | | 37 | | | | 33 | 0 | | | |) | | | 37
41 | | | | | | | | 18 | | | | | | | 4
≥ | 0-39
0-49
: 50 | | | | 7 | 10
19
74 | | | 4
4
7 | 0
9
3 | | | 40
44
66 |)
1
5 | | | 37
41
62 | | | | 33
35
57 | | | | 18
38 | | | | Unk | now | 'n | 4
≥
< | 0-39
0-49
50
30 | 9 | | | 4
7
1 | 10
19
74 | | | 4
4
7 | 0
9
3
7 | | | 40
44
66 |)
1
5 | | | 37
41
62
7 | | | | 33
35
57
4 | | | | 38 | | | | Unk | now | 'n | 4
≥
<
3 | 0-39
0-49
50
30
0-39 | 9 | | | 4
7
1
1 | 10
19
74
.2
.6 | | | 4
4
7 | 0
9
3
7
5 | | | 40
44
66
7 |)
1
5
7 | | | 37
41
62
7
9 | | | | 33
35
57
4
8 | | | | 38
2
5 | | | | Unk | now | 'n | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 7
7
1
1 | 10
19
74
.2
.6 | | | 4
4
7 | 0
9
3
7
5
8 | | | 40
44
66
7
10
15 |)
1
5
7
) | | | 37
41
62
7
9
13 | | | | 33
35
57
4
8
12 | | | | 38
2
5
10 | | Condor | | | | 'n | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39 | 9 | | | 2
7
1
1
1
3 | 10
19
74
.2
.6
.9 | | | 4
4
7
1
1
3 | 0
9
3
7
5
8
2 | | | 40
44
66
7
10
15
22 |)
1
5
7
)
5 | | | 37
41
62
7
9
13
20 | | | | 33
35
57
4
8
12
20 | | | | 38
2
5
10
17 | | Gender | | Male | e | 'n | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 7
7
1
1
1
3
18 | 10
19
74
.2
.6
.9
.86 | | | 4
4
7
1
1
3
17 |
0
9
3
7
5
8
2 | | | 40
44
66
7
10
15
22
152 |)
1
5
7
9
9
2 | | | 37
41
62
7
9
13
20 | | | : | 33
35
57
4
8
12
20 | | | | 38
2
5
10
17
82 | | | | Male
Fem | e
ale | 'n | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 77
11
11
13
18
10 | 10
19
74
.2
.6
.9
36
31 | | | 4
4
7
1
1
3
17
10 | 0
9
3
7
5
8
2
2
4 | | | 40
44
66
7
10
15
22
152
89 |)
4
5
7
)
5
2
2 | | | 37
41
62
7
9
13
20
139
81 | | | | 33
35
57
4
8
12
20
124
72 | | | | 38
2
5
10
17
82
45 | | Injection | | Male
Fem | e
ale
ID | | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 24
57
11
13
18
10
14 | 10
19
74
.2
.6
.9
36
31 | | | 4
4
7
1
1
3
17
10
13 | 0
9
3
7
5
8
2
2
4 | | | 40
44
66
7
10
15
22
152
89 |)
1
5
7
)
5
2
2 | | | 37
41
62
7
9
13
20
139
81 | | | | 33
35
57
4
8
12
20
124
72 | | | | 38
2
5
10
17
82
45
65 | | | | Male
Fem
PWI | e
ale
ID
-PW | /ID | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 18
10
14
10 | 10
19
74
.2
.6
.9
36
31 | | | 4
4
7
1
1
3
17
10 | 0
9
3
7
5
8
8
2
2
4
8
9 | | | 40
44
66
7
10
15
22
152
89 |)
1
5
7
9
9
2
2
9 | | | 37
41
62
7
9
13
20
139
81 | | | | 33
35
57
4
8
12
20
124
72 | | | | 38
2
5
10
17
82
45 | | Injection | 18 | Male
Fem | e
ale
ID
-PW
now | /ID | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 18
10
14
10
4 | 10
19
74
.2
.6
.9
86
81
99 | | | 1
1
1
3
17
10
13
9 | 0
99
33
77
55
88
22
24
44
88
99 | | | 40
44
66
7
10
15
22
152
89
129
84 |)
14
55
77
77
9)
95
94
94
94
94
94
94
94
94
94
94
94
94
94 | | | 37
41
62
7
9
13
20
139
81
120
76 | | | | 33
35
57
4
8
12
20
124
72
106
71 | | | | 38
2
5
10
17
82
45
65
44 | | Injection
Drug Use | us | Male
Fem
PWI
Non
Unk | e
ale
ID
-PW
now | /ID
m | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 18
10
14
10
4 | 140
149
174
174
175
176
176
176
176
176
176
176
176
176
176 | | | 4
4
7
1
1
3
17
10
13
9
3 | 0
9
3
3
7
5
5
8
8
2
2
2
4
4
8
9
9 | | | 40
44
66
7
10
15
22
152
89
129
84
28 |)
14
5
5
7
7
9
9
9
9
9
9
9
9
9
14
8
8
8
14
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9 | | | 37
41
62
7
9
13
20
139
81
120
76
24 | | | | 33
35
57
4
8
12
20
124
72
106
71
19 | | | | 38
2
5
10
17
82
45
65
44
18 | | Injection
Drug Use
MSM Statu | 118 | Male
Fem
PWI
Non
Unk
MSM
Non
Unk | e
ale
ID
-PW
now
M
-MS | /ID
/n
SM
/n | 4
≥
<
3
4 | 0-39
0-49
50
30
0-39
0-49 | 9 | | | 10
11
12
18
18
10
14
10
4
4
17 | 140
149
174
174
175
176
176
176
176
176
176
176
176
176
176 | | | 4
4
7
1
1
3
17
10
13
9
3
3 | 0
9
3
7
5
8
8
2
2
4
4
8
9
9 | | | 40
44
666
77
10
152
22
152
89
129
84
28
34
153
54 |)
14
55
77
77
9)
95
14
14
13
14 | | | 37
41
62
7
9
13
20
139
81
120
76
24
29 | | | | 33
35
57
4
8
12
20
1124
72
1106
71
19
26 | | | | 38
2
5
10
17
82
45
65
44
18 | | Injection
Drug Use
MSM Statu
Health | 118 | Male
Fem
PWI
Non
Unk
MSM
Non
Unk
Nor | e
ale
ID
-PW
now
MS
now
thea: | 7ID
rn
SM
rn
sst | 4
≥
<
3
4
≥ | 0-39
0-49
50
30
0-39
0-49
50 | 9 | | | 10 14 10 44 17 88 44 | 40
49
74
2
2
6
6
9
8
6
8
8
1
1
1
1
1
1
1
9
8
8
8
8
7
0
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | | 44
47
7
11
13
17
10
13
9
3
16
7
4 | 0
9
3
3
7
5
8
8
2
2
4
4
8
9
9
7
7
7
7
2
2 | | | 40
44
666
7
10
152
22
152
89
129
84
28
34
153 |)
14
55
77
77
9)
95
14
14
13
14 | | | 37
41
62
7
9
13
20
139
81
120
76
24
29 | | | 1 | 33
35
57
4
8
12
20
124
72
106
71
19
26
126
44
22 | | | | 38
2
5
10
17
82
45
65
44
18
15
78
34 | | Injection
Drug Use
MSM Statu | 115 | Male
Fem
PWI
Non
Unk
MSM
Non
Unk | e ale ID -PW now -MS now thea: | /ID rn SM rn sst n In | 4
≥
<
3
4
≥ | 0-39
0-49
50
30
0-39
0-49
50 | 9 | | | 10
11
11
12
12
14
14
15
15
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | 40
49
74
2
2
6
6
9
8
6
8
8
1
1
1
1
1
1
1
9
8
8
8
8
7
0
9
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | | | 4
4
7
1
1
3
17
10
13
9
3
3
3
16
7 | 0
9
3
7
5
8
8
2
2
4
4
8
8
9
9
7
7
7
2
2
0
0
4
4 | | | 40
44
666
77
10
152
22
152
89
129
84
28
34
153
54 |))
14
15
16
17
17
18
18
18
18
18
18
18
18
18
18
18
18
18 | | | 37
41
62
7
9
13
20
139
81
120
76
24
29
142
49 | | | 1 | 33
35
57
4
8
12
20
1124
72
1106
71
19
26
1126
44 | | | | 38
2
5
10
17
82
45
65
44
18
15
78
34 | | Indicator 6: Program | matic Comp | liance Sco | re (PCS) | | | | | | | | | |------------------------|----------------------|-------------|------------|------------|-------------|------------|--------------|----------------|------------|--------------|-------------| | | | 2014 | 02 | | O2 | 04 | 2015 | (|) 2 | O2 | 04 | | < 3 CD4 Tests | | Q1 | Q2
6.2% | | Q3
0.0% | Q4 | Q1 | | Q2 | Q3 | Q4
0.0% | | < 3 CD4 Tests | | 12.5% | | | 0.0% | 4.8% | 5.6%
5.6% | 0.0 | | 0.0%
7.1% | 14.3% | | | | 25.0% | 12.5% | | | 4.8% | | 0.0 | | | | | No Baseline Genotyp | | 0.0% | 0.0% | | 0.0% | 0.0% | 0.0% | 0.0 | | 0.0% | 7.1% | | Baseline CD4 < 200 c | | 37.5% | 37.5% | | 6.7% | 42.9% | 27.8% | 35.3 | | 21.4% | 28.6% | | Non-Recommended | | 6.2% | 6.2% | | 0.0% | 0.0% | 0.0% | 0.0 | | 0.0% | 0.0% | | Non Viral suppressio | n at 9 Mo. | 62.5% | 50.0% | O | 50.0% | 57.1% | 44.4% | 41.2 | | 28.6% | 35.7% | | PCS Score: 0 | | 3 | 5 | | 3 | 5 | 7 | | 6 | 7 | 5 | | PCS Score: 1 | | 7 | 6 | | 8 | 10 | 8 | | 9 | 6 | 6 | | PCS Score: 2 | | 3 | 3 | | 4 | 5 | 2 | | 2 | 1 | 3 | | PCS Score: 3 | | 2 | 2 | | 0 | 1 | 1 | | 0 | 0 | 0 | | PCS Score: 4 or more | | 1 | 0 | | 0 | 0 | 0 | | 0 | 0 | 0 | | Total (n=) | | 16 | 16 | | 15 | 21 | 18 | • | 17 | 14 | 14 | | Indicator 7: New DT | P ARV Partic | _ | | | | | | | | | | | First Starts | | 5 | 2 | | 4 | 5 | 3 | | 4 | 4 | 4 | | Experienced Starts | | 4 | 8 | | 6 | 2 | 3 | | 5 | 4 | 3 | | Indicator 8: CD4 Cel | l Count at AF | RT Initiati | on for ARV | -Naïve | DTP Parti | cipants | | | | | | | CD4 ≥ 500 | | _ | _ | | - | _ | _ | | _ | _ | _ | | CD4 350-499 | | _ | _ | | _ | _ | _ | | _ | _ | _ | | CD4 200-349 | | _ | _ | | _ | _ | _ | | _ | _ | _ | | CD4 50-199 | | _ | _ | | _ | _ | _ | | _ | _ | _ | | CD4 < 50 | | _ | _ | | _ | _ | _ | | _ | _ | _ | | CD4 Median (cells/µI | <u>.</u>) | _ | _ | | _ | _ | _ | | _ | _ | _ | | Total (n=) | | ≤ 5 | ≤ 5 | | ≤ 5 | ≤ 5 | ≤ 5 | \leq | 5 | ≤ 5 | ≤ 5 | | Indicator 9: Active ar | nd Inactive D' | TD Dartici | nante | | | | | | | | | | Active DTP Participa | | 211 | 218 | | 220 | 226 | 220 | 2′ | 25 | 218 | 218 | | Inactive DTP Particip | | 40 | 37 | | 36 | 36 | 34 | | 35 | 37 | 38 | | mactive DTF Farticip | Danis | 40 | 37 | | 30 | 30 | 34 | • |)) | 37 | 36 | | Indicator 10: Antiret | roviral Adhei | rence | | | | | | | | | | | ≥ 95% | | - | _ | | 5 | 5 | _ | | - | - | - | | 80% to < 95% | | - | _ | | 2 | 2 | _ | | - | _ | _ | | 40% to < 80% | | _ | _ | | 0 | 0 | _ | | _ | - | _ | | < 40% | | - | _ | | 0 | 0 | _ | | - | - | - | | Total (n=) | | ≤ 5 | ≤ 5 | | 7 | 7 | ≤ 5 | ≤ | 5 | ≤ 5 | ≤ 5 | | Indicator 11: Resistar | nce Testing ar | nd Results | | | | | | | | | | | Suppressed | | 124 | 97 | | 128 | 111 | 107 | 12 | 22 | 104 | 116 | | Wild Type | | 27 | 32 | | 26 | 21 | 20 | | 17 | 27 | 18 | | Never Genotyped | | 1 | 0 | | 1 | 1 | 0 | | 2 | 0 | 0 | | 1-Class | | 12 | 8 | | 10 | 14 | 11 | | 9 | 7 | 10 | | 2-Class | | 2 | 1 | | 2 | 2 | 2 | | 1 | 1 | 0 | | 3-Class | | 0 | 0 | | 0 | 0 | 0 | |
0 | 0 | 0 | | Total (n=) | | 166 | 138 | | 167 | 149 | 140 | 15 | 51 | 139 | 144 | | Indicator 12, AIDS I | Dofining Illno | | 2007 | 2008 | 2000 | 2010 | 2011 | 2012 | 2012 | 2014 | 2015 | | Indicator 12: AIDS-I | Cases | .53 | 2007
15 | 2008 | 2009 | 2010 | 2011 | 2012
7 | 2013 | 2014
≤ 5 | 2015
≤ 5 | | ART initiation | Rate per 10 | 0.000 | 5.4 | 5.0 | 5. <i>7</i> | 3.6 | 4.6 | 2.5 | 3.5 | ≥ 3
1.7 | 23 | | AIDS Cases | Cases | 0,000 | 6 | 5.0
≤ 5 | 6 | 3.6
7 | 4.6
≤ 5 | 2.3
≤ 5 | 3.3
7 | 7 | -
≤ 5 | | (DTP Reports) | Rate per 10 | 0.000 | 2.1 | | 2.1 | 2.5 | ≤ 5
1.8 | ≤ 5
1.1 | 2.4 | 2.4 | ≥ 3 | | AIDS Cases | • | 0,000 | | 1.1 | | | | | | | _ | | (BCCDC Reports) | Cases
Rate per 10 | 0 000 | ≤ 5
1.8 | ≤ 5
1.1 | 8
2.9 | ≤ 5
1.1 | 6
2.1 | ≤ 5 0.4 | 6
2.1 | ≤ 5
1.7 | _ | | (DODD Reports) | Kuie per 10 | 0,000 | 1.0 | 1.1 | 2.9 | 1.1 | 2.1 | 0.4 | 2.1 | 1./ | - | | Indicator 13: HIV-Re | elated Mortali | ity | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | | | Northern Health | | | 7 | 6 | 7 | 8 | 6 | ≤5 | ≤5 | ≤5 | | | Per 100 HIV+ Popula | | | 2.28 | 1.92 | 2.21 | 2.47 | 1.81 | 0.89 | 1.45 | 1.42 | | | Per 100,000 Population | on | | 2.30 | 1.95 | 2.42 | 2.75 | 2.11 | 1.05 | 1.73 | 1.72 | | | | | | | | | | | | | | |